Vol. 54 No. 6 (2024)
DEVELOPMENT OF SCIENCE AND EDUCATION

Project-based Approach as the Start of STEM Education

Yu.P. Voronov
Institute of Economics and Industrial Engineering, SB RAS
Bio

Published 2024-11-27

Keywords

  • project approach; start-up; learning; information technology; STEM education; STEAM education; innovative economy; technological entrepreneurship; the role of a teacher

How to Cite

1.
Voronov Ю. Project-based Approach as the Start of STEM Education. ECO [Internet]. 2024 Nov. 27 [cited 2025 Jun. 9];54(6):137-46. Available from: https://ecotrends.ru/index.php/eco/article/view/4798

Abstract

The paper is devoted to the problem of activation of students’ initiative in mastering professional skills and competencies, which is extremely relevant for the Russian system of higher education. One of the ways of such activation is the project approach, which fundamentally changes the relationship between teacher and student. Based on the author’s personal experience, the author describes how students are involved in the learning process and become its active participants. The differences between the project approach and the principles of STEM-education in the context of the achievability of compliance with these principles are discussed. The problems of transition from STEM-education to STEAM-education are also touched upon.

References

  1. Ангелова О.Ю. и др. Типология стилей профессиональной деятельности наставника // Известия Юго-Западного государственного университета. 2020. Т. 10. № 6. С. 220–228.
  2. Анисимова Т.И. и др. STEAM- образование как инновационная технология для индустрии 4.0. // Научный диалог. 2018. № 11. С. 322–332.
  3. Грязнов С.А. STEAM-образование: подход к обучению в 21 веке // Экономика образования. 2020. № 6. С. 57–65.
  4. Киллпатрик У.Х. Метод проектов. Применение целевой установки в педагогическом процессе. Ленинград: Брокгауз–Ефрон, 1925. 43 с.
  5. Широкова Г.В., Беляева Т.В. Предпринимательские намерения студентов: концепция и основные подходы к исследованию // Современная конкуренция. 2015. Т. 9. № 2 (50). С. 5–31
  6. Appianing, J., Van Eck, R.N. (2018). Development and validation of the Value-Expectancy STEM Assessment Scale for students in higher education. International Journal of STEM Education. Vol. 5. No. 24. Pp. 1–16.
  7. Bear, S., Jones, G. (2017). Students as proteges: Factors that lead to success. Journal of Management Education. Vol. 41. No. 1. Pp. 146–168.
  8. Bybee, R. W. (2010). Advancing STEM Education: A 2020 vision. Technology and Engineering Teacher, 70. No.1. Рp. 30–31.
  9. Dean, K.L. (2021). Too much of a good thing: Escalating developmental needs in the educator – student relationship. Academia Letters, April. Pp. 1–8.
  10. Godec, S. et a1. (2020). Young people’s tech identity performances: why materiality matters. International Journal of STEM Education. Pp. 7–51.
  11. Higgins, M. al. (2019). Patchworking Response-ability in Science and Technology Education Reconceptualizing. Educational Research Methodology. Vol. 3. No. 2. Pp. 1–28.
  12. Keiler, L.S. (2018). Teachers’ roles and identities in student-centered classrooms International Journal of STEM Education. No. 1. Рp. 5–34.
  13. Langie, G., Pinxten, M. (2018). The transition to STEM higher education: Policy recommendation – conclusions of the ready STEM go-project. International Journal of Engineering Pedagogy. Vol. 8. No. 10. Pp. 10–13.
  14. McCulloch, A. (2009). The student as co‐producer: learning from public administration about the student–university relationship. Studies in Higher Education. Vol. 34. No. 2. Рp. 171–183.
  15. Singh, M. (2021). Acquisition of 21st Century Skills Through STEAM Education. Academia Letters. April. Рp. 1–7.
  16. Thomas, A.S. et al. (2015). Leveraging the power of peer-led learning: investigating effects on STEM performance in urban high schools. Educational Research and Evaluation. 21. No. 7–8. Рp. 537–557.