Vol. 56 No. 1 (2026)
Cover story: the “Price” of Prices

Pricing Рolicy under Digital Economy: New Possibilities and New Risks

N.M. Rozanova
The Moscow School of Economics Lomonosov Moscow State University; Moscow State Institute of International Relations (MGIMO)

Published 2026-01-29

Keywords

  • nonlinear pricing; algorithmic pricing; price policy; digital pricing strategies; consumer; digital economy

How to Cite

1.
Rozanova Н. Pricing Рolicy under Digital Economy: New Possibilities and New Risks. ECO [Internet]. 2026 Jan. 29 [cited 2026 Jan. 30];56(1):27-40. Available from: https://ecotrends.ru/index.php/eco/article/view/4934

Abstract

The paper examines new forms of price interactions that have become widespread in the digital economy. Based on an analysis of foreign empirical studies, it identifies the pricing tools used by modern companies. It is shown that the digital economy not only creates new opportunities for innovative digital formats (algorithmic nonlinear pricing, personalized prices, individualized price dynamics), but also generates new threats for companies associated with increased competition and customer disloyalty. Digital pricing pressure from companies generates a complex response from buyers, changing a number of elements of optimal consumer choice. All this leads to a nonlinear relationship between a company’s digital activity and its sales, revenue, and profit.

References

  1. Akyildirim, E., Corbet, S., Nicolau, J.L., Oxley, L (2025). Understanding reputational disaster during economic crises: evaluating aviation sector response differentials. Tourism Management. Vol. 106. No. 105028. DOI: 10.1016/j.tourman.2024.105028
  2. Apasrawirote, D., Yawised, K., Muneesawang, P. (2022). Digital marketing capability: the mystery of business capabilities. Marketing Intelligence and Planning. Vol. 40. No. 4. Pp. 477–496.
  3. Asker, J., Fershtman, C., Pakes, A. (2021). Artificial intelligence and pricing: the impact of algorithm design. NBER Working Paper No. 28535. Available at: http://www.nber.org/papers/w28535 (accessed 10.01.2024).
  4. Blut, M., Wunderlich, N.V., Brock, C. (2024). Facilitating retail customers’ use of AI-based virtual assistants: a meta-analysis. Journal of Retailing. Vol. 100. Pp. 293–315.
  5. Boik, A., Takahashi, H. (2020). Fighting bundles. American Economic Journal: Microeconomics. Vol. 12. No. 1. Pp. 156–187.
  6. Chang, D., Lee, J. (2022). Price skimming: commitment and delay in bargaining with outside option. Journal of Economic Theory. Vol. 205. No.1. DOI: 10.1016/j.jet.2022.105528
  7. Chen, S.J., Tamilmani, K., Tran, K.T., Waseem, D., Weerakkody, V. (2022). How privacy practices affect customer commitment in the sharing economy. Industrial Marketing Management. Vol. 107. Pp. 161–175.
  8. Cheng, Y., Zhang, K., Zhuang, X. (2024). Follow your heart or your mind: the effect of consumption frequency on consumers’ reliance on feelings. Journal of Business Research. Vol. 175. No. 114543. DOI: 10.1016/j.jbusres.2024.114543
  9. Conti, E., Camillo, F., Pencarelli, T. (2023). The impact of digitalization on marketing activities in manufacturing companies. The TQM Journal. Vol. 35. No. 9. Pp. 59–82.
  10. Ding, Y., Zhang, T. (2018). Price-directed consumer search. International Journal of Industrial Organization. Vol. 58. Pp. 106–135.
  11. Dowling, K., Manchanda, P., Spann, M. (2021). The existence and persistence of the pay-per-use bias in car sharing services. International Journal of Research in Marketing. Vol. 38. No. 2. Pp. 329–342.
  12. Endres, H., Auburger, J., Helm, R. (2024). Industrial innovation management in the age of digital transformation: the risk of too strong selling capabilities. Industrial Marketing Management. Vol. 117. Pp. 371–385.
  13. Fainmesser, I., Galeotti, A. (2020). Pricing network effects. American Economic Journal: Microeconomics. Vol. 12. No. 3. Pp. 1–32.
  14. Francke, A., Carrete, L. (2023). Consumer self-regulation: looking back to look forward. A systematic literature review. Journal of Business Research. Vol. 157. No. 113461. DOI: 10.1016/j.jbusres.2022.113461
  15. Garaus, M., Wagner, U., Rainer, R. (2021). Emotional targeting using digital signage systems and facial recognition at the point-of-sale. Journal of Business Research. Vol. 131. Pp. 747–762.
  16. Garcia, D., Shelegia, S. (2018). Consumer search with observational learning. RAND Journal of Economics. Vol. 49. No. 1. Pp. 224–253.
  17. Goel, P., Parayitam, S., Sharma, A., Rana, N., Dwivedi, Y. (2022). A moderated mediation model for e-impulse buying tendency, customer satisfaction and intention to continue e-shopping. Journal of Business Research. Vol. 142. No. 12041. DOI: 10.1016/j.jbusres.2021.12.041
  18. Halaburda, H., Jullien, B., Yehezkel, Y. (2020) Dynamic competition with network externalities: how history matters, The RAND Journal of Economics. Vol. 51. No. 1. Pp. 3–31.
  19. Honka, E., Seiler, S., Ursu, R. (2024). Consumer search: what can we learn from pre-purchase data? Journal of Retailing. Vol. 100. Pp. 114–129.
  20. Klein, T., (2021). Autonomous algorithmic collusion: q-learning under sequential pricing. The RAND Journal of Economics. Vol. 52. Pp. 538–558.
  21. Liu, J., Dalton, A.N. (2024). The inauthentic consumer: consequences of self-inauthenticity for possession disposal. Journal of Business Research. Vol. 181. No. 114741. DOI: 10.1016/j.jbusres.2024.114741
  22. Lotfi, A., Naoum-Sawaya, J., Lotfi, As., Jiang, Z. (2024). To skim or not to skim: studying the optimal pricing strategy for technology products. Omega. Vol. 127. No. 103079. DOI: 10. 1016.j. omega.2024.103079
  23. Moghddam, H.A., Carlson, J., Wyllie, J., Rahman, S.M. (2024). Scroll, stop, shop: decoding impulsive buying in social commerce. Journal of Business Research. Vol. 182. No. 114776. DOI: 10.1016/j.jbusres.2024.114776
  24. Nagel, Ch., Heidenreich, S., Schumann, J. (2024). Enhancing adoption of sustainable product innovations: addressing reduced performance with risk-reducing product modifications. Journal of Business Research. Vol. 179. No. 114684. DOI: 10.1016.j.jbusres.2024.11.4684
  25. Nanni, A., Ordanini, A. (2024). Digital signage for promoting price discounts: first insights into customer spending on distant and nearby discounted products. Journal of Retailing. Vol. 100. Pp. 186–198.
  26. Olsen, S., Khoi, N., Tuu, H. (2022). The well-being and ill-being of online impulsive and compulsive buying on life satisfaction: the role of self-esteem and harmony in life. Journal of Macromarketing. Vol. 42. No. 1. Pp. 128–145.
  27. Panniello, U., Natalicchio, A., Ardito, L., Petruzzelli, A.M. (2024). A cross-sector exploration of the barriers to customer satisfaction in the sharing economy. Journal of Business Research. Vol. 183. No. 114862. DOI: 10.1016/j.jbusres.2024.114862
  28. Rana, N.P., Kar, A.K., Gupta, M., Papas, I.O., Papadopoulos, T. (2023). Unravelling the dark side of sharing economy. Industrial Marketing Management. Vol. 113. Pp. A4-A10.
  29. Sairanen, M., Aarikka-Stenroos, L., Kaipainen, J. (2024). Customer-perceived value in the circular economy: a multidimensional framework. Industrial Marketing Management. Vol. 117. Pp. 321–343.
  30. Schuster, E., Spann, M. (2024). Pay today, or delay the pay: consumer preference for double flat-rate pricing plans. Journal of Business Research. Vol. 182. No. 114804. DOI: 10.1016.j.jbusres.2024.114804
  31. Shams, R., Chatterjee, S., Chudhuri, R. (2024). Developing brand identity and sales strategy in the digital era: moderating role of consumer belief in brand. Journal of Business Research. Vol. 179. No. 114689. DOI: 10.1016/j.jbusres.2024.114689
  32. Soderstrom, C., Mikalef, P., Landmark, A.D., Gupta, S. (2024). Augmented reality (AR) marketing and consumer responses: a study of cue-utilization and habituation. Journal of Business Research. Vol. 182. No. 114813. DOI: 10.1016/j.jbusres.2024.114813
  33. Strauss, I., O’Reilly, T., Mazzucato, M. (2023). Amazon’s algorithmic rents: the economics of information on Amazon. Institute for Innovation and Public Purpose. Working Paper 2023–12. Available at: https://www.ucl.ac.uk/bartlett/public-purpose/wp2023–12 (accessed 14.05.2024).
  34. Weber, N., Marchand, A., Kunz, R. (2024). Price and delay decisions for sequentially released products: the case of transactional streaming services. International Journal of Research in Marketing. Article in press. Available at: https://doi.org/10.1016/j.ijresmar.2024.04.003 (accessed 10.10.2024)
  35. Wieringa, J., Kannan, P., Ma, X., Reutterer, T., Risselada, H., Skiera, B. (2021). Data analytics in a privacy-concerned world. Journal of Business Research. Vol. 122. Pp. 915–925.
  36. Yuan, N., Feng, H., Li, M., Feng, N. (2022). Penetration or skimming? Pricing strategies for software platforms considering asymmetric cross-side network effects. Journal of the Association for Information Systems. Vol. 23. No. 4. Pp. 966–998.
  37. Zhang, J., Chiang, W. (2020). Durable goods pricing with reference price effects. Omega. Vol. 91. No. 9. Article 102018. DOI: 10.1016/j.omega.2018.12.007.
  38. Zhang, S., Chan, T.Y., Luo, X., Wang, X. (2022). Time-inconsistent preferences and strategic self-control in digital content consumption. Marketing Science. Vol. 41. No. 3. Pp. 616–636,
  39. Zielke, S., Komor, M. (2025). Why do customers choose online or offline channels? A framework of motives and its application in an international context. Journal of Retailing and Consumer Services. Vol. 82. No. 104054. DOI: 10.1016/j.jretconser.2024.104054