Vol. 55 No. 6 (2025)
FINANCIAL ECONOMY

Assessment of the Sensitivity of Banking Systems of Russia and Brazil to Macroeconomic Shocks

B.V. Balanda
National Research University “Higher School of Economics”

Published 2025-11-30

Keywords

  • financial stability; banking system; macroeconomic factors; Russia; Brazil; SVAR modeling

How to Cite

1.
Balanda Б. Assessment of the Sensitivity of Banking Systems of Russia and Brazil to Macroeconomic Shocks. ECO [Internet]. 2025 Nov. 30 [cited 2025 Dec. 1];55(6):222-40. Available from: https://ecotrends.ru/index.php/eco/article/view/4927

Abstract

The paper compares the influence of macroeconomic factors on the financial stability of the banking systems of Russia and Brazil using SVAR modeling in 2000–2020. It is commonly believed that the economies of Russia and Brazil are similar, but the study revealed significant differences in their banking systems. The Russian banking system has proven to be more resilient, while the macroeconomic environment has a more significant impact on the Brazilian banking sector. Russia’s monetary policy has proven to be more effective, with the Central Bank of Russia acting as a mega-regulator, which contrasts with the role of the Central Bank of Brazil, whose influence on the financial stability of the banking system is limited. The greatest influences on banking systems are unemployment rates, inflation, the volume of credit to the private sector, and the real effective exchange rate.

References

  1. Безбородова А.В. SVAR: анализ и прогнозирование основных макроэкономических показателей // Банковский вестник. 2017. № S11. С. 3–30.
  2. Исаева Е.А., Бухтуев К.А., Нехорошева М.А. Анализ надежности коммерческих банков с использованием рейтинговой системы CAMEL // Экономика и Современный Менеджмент: Теория и Практика. 2016. № 3(57). C. 35–43.
  3. Athanasoglou, P.P., Brissimis, S.N., Delis, M.D. (2008). Bank-specific, industry-specific and macroeconomic determinants of bank profitability. Journal of International Financial Markets, Institutions and Money. Vol. 18. No. 2. Pp. 121–136. DOI: 10.1016/J.INTFIN.2006.07.001
  4. Belousova, V.Y., Kozyr, I.O. (2016). How do macroeconomic indicators influence banking profitability in Russia? Journal of the New Economic Association. Vol. 2. No. 30. Pp. 77–103. DOI: 10.31737/2221–2264–2016–30–2–4
  5. Blanchard, O.J. (2004). Fiscal Dominance and Inflation Targeting: Lessons from Brazil. SSRN Electronic Journal. DOI: 10.2139/ssrn.518265
  6. Bonin, J., Louie, D. (2015). Did foreign banks “cut and run” or stay committed to Emerging Europe during the crises? BOFIT Discussion Paper. No. 31. Available at: https://ssrn.com/abstract=2694995 (accessed 13.04.2024).
  7. Caner, S. (2004). Efficiency of the Banking Sector in the Russian Federation: An International Comparison. Higher School of Economics Economic Journal. Vol. 3. Pp. 357–375.
  8. Canova, F., Pérez Forero, F. J. (2014). Estimating Overidentified, Non-Recursive, Time Varying Coefficients Structural VARs. CEPR Discussion Paper. No. DP10022. Available at: https://ssrn.com/abstract=2501494 (accessed: 13.04.2024).
  9. Dash, M., Das, A. (2012). A CAMELS Analysis of the Indian Banking Industry. SSRN Electronic Journal. DOI: 10.2139/ssrn.1666900
  10. Datta, R.K. (2012). CAMELS Rating System Analysis of Bangladesh Bank in Accordance with BRAC Bank Limited. Available at: http://dspace.bracu.ac.bd/xmlui/handle/10361/1699 (accessed: 13.04.2024).
  11. Dietrich, A., Wanzenried, G. (2014). The determinants of commercial banking profitability in low-, middle-, and high-income countries. Quarterly Review of Economics and Finance. Vol. 54. No. 3. Pp. 337–354. DOI: 10.1016/J.QREF.2014.03.001
  12. Dietsch, M., Lozano-Vivas, A. (2000). How the environment determines banking efficiency: A comparison between French and Spanish industries. Journal of Banking and Finance. Vol. 24. No. 6. Pp. 985–1004. DOI: 10.1016/S0378–4266(99)00115–6
  13. Enders, W. (2015). Applied Econometric Time Series (4th ed.). Wiley, Hoboken, NJ.
  14. Feldmann, H. (2011). Financial system stress and unemployment in industrial countries. Journal of Economic Studies. Vol. 38. No. 5. Pp. 504–527. DOI: 10.1108/01443581111161788
  15. Fries, S., Taci, A. (2005). Cost efficiency of banks in transition: Evidence from 289 banks in 15 post-communist countries. Journal of Banking and Finance. Vol. 29. No. 1. Pp. 55–81. DOI: 10.1016/J.JBANKFIN.2004.06.016
  16. Giannini, C. (2013). Topics in Structural VAR Econometrics. Lecture Notes in Economics and Mathematical Systems. Vol. 381. Springer Berlin Heidelberg. DOI: 10.1007/978–3–662–02757–8
  17. Hausmann, R. (2008). In Search of the Chains that Hold Brazil Back. HKS Working Paper. No. RWP08–061. DOI: 10.2139/ssrn.1338262
  18. Holland, M. (2019). Fiscal crisis in Brazil: Causes and remedy. Brazilian Journal of Political Economy. Vol. 39. No. 1. Pp. 88–107. DOI: 10.1590/0101–35172019–2918
  19. Kumar, A., Kalhoro, M.R., Kumar, R., Ghumro, N.H., Dakhan, S.A., & Kumar, V. (2020). Decomposing the Effect of Domestic and Foreign Economic Policy Uncertainty Shocks on Real and Financial Sectors: Evidence from BRIC Countries. Journal of Risk and Financial Management. Vol. 13. No. 12. Pp. 315. DOI: 10.3390/jrfm13120315
  20. Lozano-Vivas, A., Pastor, J.T. (2010). Do performance and environmental conditions act as barriers for cross-border banking in Europe? Omega. Vol. 38. No. 5. Pp. 275–282. DOI: 10.1016/J.OMEGA.2009.05.002
  21. Lozano-Vivas, A., Pastor, J.T., Pastor, J.M. (2002). An Efficiency Comparison of European Banking Systems Operating under Different Environmental Conditions. Journal of Productivity Analysis. Vol. 18. No. 1. Pp. 59–77. DOI: 10.1023/A:1015704510270
  22. Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer. DOI: 10.1007/978–3–540–27752–1
  23. Nach, M.N., Ncwadi, R. (2024). Evaluating BRICS as an Optimum Currency Area: Insights from SVAR Modeling. Cogent Economics & Finance. Vol. 12. No. 1. Article 2399321. DOI: 10.1080/23322039.2024.2399321
  24. Nasir, M. A., Naidoo, L., Shahbaz, M., & Amoo, N. (2018). Implications of Oil Prices Shocks for the Major Emerging Economies: A Comparative Analysis of BRICS. Energy Economics. Vol. 76(C). Pp. 76–88. DOI: 10.1016/j.eneco.2018.09.023
  25. Nimalathasan, B. (2008). A Comparative Study of Financial Performance of Banking Sector in Bangladesh – An Application of CAMELS Rating System. Economic and Administrative Series. No. 2. Pp. 141–152. Available at: http://ssrn.com/abstract=2117189 (accessed: 13.04.2024).
  26. Reis, T. B., Betzelt, S., Evans, T., Hein, E., Herr, H., Mahnkopf, B., Teipen, C., Truger, A., Wissen, M. (2018). Why are policy real interest rates so high in Brazil? An analysis of the determinants of the Central Bank of Brazil’s real interest rate. International Journal of Political Economy. Vol. 47. Pp. 178–198. DOI: 10.1080/08911916.2018.1497580.
  27. Segura-Ubiergo, A. (2012). The Puzzle of Brazil’s High Interest Rates. IMF Working Papers. No. 12/62. DOI: 10.5089/9781463938390.001.A001
  28. Styrin, K. (2005). What Explains Differences in Efficiency Across Russian Banks. EERC Working Paper Series. Available at: https://www.researchgate.net/publication/254070936_The_Puzzle_of_Brazil’s_High_Interest_Rates (accessed: 13.04.2024).
  29. Swamy, V. (2014). Testing the interrelatedness of banking stability measures. Journal of Financial Economic Policy. Vol. 6. No. 1. Pp. 25–45. DOI: 10.1108/JFEP-01–2013–0002