Vol. 54 No. 5 (2024)
FINANCIAL ECONOMY

The Actual State and Current Trends in the Market of Physical Gold

M.E. Kosov
Department of Public Finance of the Financial University under the Government of the Russian Federation; Plekhanov Russian University of Economics
Bio
O.V. Staroverova
Plekhanov Russian University of Economics
Bio
T.K. Chernysheva
Plekhanov Russian University of Economics; Institute of Economic Policy and Economic Security Problems of the Financial University under the Government of the Russian Federation
Bio

Published 2024-10-07

Keywords

  • world gold market; physical gold; technical analysis; gold prices; global trends; precious metals; gold and foreign exchange reserves; central banks

How to Cite

1.
Kosov М, Staroverova О, Chernysheva Т. The Actual State and Current Trends in the Market of Physical Gold. ECO [Internet]. 2024 Oct. 7 [cited 2024 Nov. 19];54(5):224-39. Available from: https://ecotrends.ru/index.php/eco/article/view/4785

Abstract

The paper reviews the current state and latest trends in the physical gold market. The purpose of the paper is to assess the importance of physical gold for investors based on market analysis, taking into account global economic trends. The data on investments in gold by countries of the world, country gold and foreign exchange reserves, global demand by sector over the last 10 years and the dynamics of gold production volume in the top 10 companies of the world are presented. To assess the investment attractiveness of physical gold, a technical analysis was carried out. Based on the results obtained, the authors have formulated the current trends in the physical gold market and forecasts of their development for the next 1–3 years.

References

  1. Белова М.Т. Особенности и перспективы «золотых облигаций» на российском фондовом рынке // Финансовые рынки и банки. 2023. № 5. С. 78–83.
  2. Борисов А.Н. (2017). Золото как элемент мировой валютной системы в разрезе развитых стран и стран с формирующимся рынком и развивающихся стран // Инновации и инвестиции. № 2. C. 195–205.
  3. Идрисова А.Р. (2023). Мировой рынок золота: современное состояние и оценка инвестиционной привлекательности // Актуальные исследования. № 11 (141). Ч.II. C. 14–17.
  4. Раджабова П.С. Деятельность центральных банков на международных рынках золота // Экономика и бизнес: теория и практика. 2019. № 3–2. С. 69–71. DOI: 10.24411/2411–0450–2019–10440
  5. Шаповалова А.В., Чирков М.А., Чистяков М.С. (2023). Мировой рынок золота и перспективы его развития // ЭТАП: экономическая теория, анализ, практика. № (4). С. 83–110. DOI: 10.24412/2071–6435–2023–4–83–110
  6. Щербакова Е.С. Современное состояние мирового рынка золота и тенденции его развития // Вестник образовательного консорциума Среднерусский университет. Серия: Экономика и управление. 2020. № 15. C. 42–45.
  7. Alameer, Z., Abd Elaziz, M., Ewees, A.A., Ye, H., Jianhua, Z. (2019). Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm. Resources Policy. No. 61. Pp. 250–260. DOI: 10.1016/j.resourpol.2019.02.014
  8. Baser, P. Saini, J.R. Baser, N. (2023). Gold Commodity Price Prediction Using Tree-based Prediction Models. International Journal of Intelligent Systems and Applications in Engineering. No. 11(1s). Pp. 90–96.
  9. Boongasame, L. (2023). Factors Affecting Gold Price Prediction and the Use of Deep Learning Techniques for Gold Price Prediction. In Handbook of Research on Artificial Intelligence and Knowledge Management in Asia’s Digital Economy (pp. 271–299). IGI Global.
  10. Dhokane, R.M., Sharma, O.P. (2023). A Comprehensive Review of Machine Learning for Financial Market Prediction Methods. International Conference on Emerging Smart Computing and Informatics (ESCI).
  11. Dooley, G., & Lenihan, H. (2005). An assessment of time series methods in metal price forecasting.Resources Policy. No. 30(3). Pp. 208–217.
  12. Feldstein, M. (1980). Inflation, tax rules, and the prices of land and gold. Journal of Public Economics. No. 14(3). Pp. 309–317. DOI: 10.1016/0047-2727(80)90029-8
  13. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics. No. 29(5). Pp. 1189–1232. DOI: 10.1214/aos/1013203451
  14. Hajek, P., Novotny, J. (2022). Fuzzy rule-based prediction of gold prices using news affect. Expert Systems with Applications. No. 193. P. 116487. DOI: 10.1016/j.eswa.2021.116487
  15. Kilimci, Z.H. (2022). Ensemble Regression-Based Gold Price (XAU/USD) Prediction. Journal of Emerging Computer Technologies. No. 2(1). Pp. 7–12.
  16. Madziwa, L., Pillalamarry, M., Chatterjee, S. (2022). Gold price forecasting using multivariate stochastic model. Resources Policy. No. 76. P. 102544. DOI: 10.1016/j.resourpol.2021.102544
  17. Parisi, A., Parisi, F., Díaz, D. (2008). Forecasting gold price changes: Rolling and recursive neural network models. Journal of Multinational Financial Management. No. 18(5). Pp. 477–487. DOI: 10.1016/j.mulfin.2007.12.002
  18. Pattnaik, D. Hassan, M.K., DSouza, A., & Ashraf, A. (2022). Investment in Gold: A Bibliometric Review and Agenda for Future Research. Research in International Business and Finance, 101854.
  19. Pesaran, M.H., Smith, R.P. (2019). A Bayesian analysis of linear regression models with highly collinear regressors. Econometrics and Statistics. No. 11. Pp. 1–21. DOI: 10.1016/j.ecosta.2018.10.001
  20. Pierdzioch, C., Risse, M., Rohloff, S. (2015). Forecasting gold-price fluctuations: A real-time boosting approach. Applied Economics Letters. No. 22(1). Pp. 46–50. DOI: 10.1080/13504851.2014.92504
  21. Plakandaras V., Ji, Q. (2022). Intrinsic decompositions in gold forecasting. Journal of Commodity Markets. No. 28. P. 100245. DOI: 10.1016/j.jcomm.2022.100245
  22. Samee, N., Atteia, G., Alkanhel, R., Alhussan, A.A., AlEisa, H.N. (2022). Hybrid Feature Reduction Using PCC-Stacked Autoencoders for Gold/Oil Prices Forecasting under COVID-19 Pandemic. Electronics (Basel). No. 11(7). P. 991. DOI: 10.3390/electronics11070991
  23. Shah, J., Vaidya, D., & Shah, M. (2022). A comprehensive review on multiple hybrid deep learning approaches for stock prediction. Intelligent Systems with Applications, 200111.
  24. Vidal, A., Kristjanpoller, W. (2020). Gold volatility prediction using a CNN-LSTM approach.Expert Systems with Applicatio
  25. Wen, F., Yang, X., Gong, X,. Lai, K. K. (2017). Multi-scale volatility feature analysis and prediction of gold price. International Journal of Information Technology & Decision Making, No. 16(01). Pp. 205–223. DOI: 10.1142/S0219622016500504