Vol. 53 No. 9 (2023)
DEBATES

Assessment of Mutual Benefits of Solar and Wind Electricity Development and Hydrogen Transportation

V.Yu. Potashnikov
Laboratory for Sustainable Development Studies of RANEPA
V.A. Barinova
Laboratory for Sustainable Development Studies of RANEPA
Bio
P.A. Levakov
Laboratory for Sustainable Development Studies of RANEPA
V.Kh. Berdin
International Sustainable Energy Development Centre Under the Auspices of UNESCO
G.M. Yulkin
International Sustainable Energy Development Centre Under the Auspices of UNESCO

Published 2023-08-30

Keywords

  • decarbonization; hydrogen; RUHOUR; RPS; transport development; solar energy; wind energy

How to Cite

1.
Potashnikov В, Barinova В, Levakov П, Berdin В, Yulkin Г. Assessment of Mutual Benefits of Solar and Wind Electricity Development and Hydrogen Transportation. ECO [Internet]. 2023 Aug. 30 [cited 2024 May 20];53(9):173-92. Available from: https://ecotrends.ru/index.php/eco/article/view/4658

Abstract

The paper examines various practices of developing and adopting technologies of production, transportation, storage and usage of hydrogen in the developed countries. The experience of leading countries of the world in the field of development and application of technologies of hydrogen production, transportation, storage and use is considered. The primary economic and social factors of hydrogen energy development and its role in achieving long-term goals of countries in terms of greenhouse gas emissions are highlighted. The potential of “green” hydrogen for transportation needs in Russia, including its impact on electricity prices, was assessed with the aid of a highly detailed model of the representative energy system RUHOUR. Sensitivity analysis showed that at a price of more than $2 per kgH2 (~$0.2 per liter of gasoline), it is most likely that the entire potential demand for hydrogen can be met. The development of large-scale green hydrogen generation infrastructure in Russia can help reduce greenhouse gas emissions, accelerate diversification of the export structure, and reduce electricity prices for end users.

References

  1. Бердин В.К., Кокорин А.О., Поташников В.Ю., Юлкин Г.М. Развитие ВИЭ в России: потенциал и практические шаги // Экономическая политика. 2020. T. 15. № 2. С. 106–135. DOI: 10.18288/1994–5124–2020–2–106–135
  2. Луговой О.В., Поташников В.Ю., Гордеев Д.С. Прогнозы энергобаланса и выбросов парниковых газов на модели RU-TIMES до 2050 года // Научный вестник ИЭП им. Гайдара. 2014. № 5. С. 39–43.
  3. Blazejczak J., Braun, F.G., Edler, D., Schill, W.F. (2014). Economic effects of renewable energy expansion: A model-based analysis for Germany. Renewable and Sustainable Energy Reviews. Vol. 40. Pp. 1070–1080. DOI: 10.1016/j.rser.2014.07.134
  4. Borowski, P.F. (2020). Zonal and Nodal Models of Energy Market in European Union. Energies. Vol. 13. No. 16. DOI: 10.3390/en13164182
  5. Crippa, M., Guizzardi, D., Solazzo, E., Muntean, M., Schaaf, E., Monforti-Ferrario, F., Banja, M., Olivier, J.G.J., Grassi, G., Rossi, S., Vignati, E. (2021). GHG emissions of all world countries. Publications Office of the European Union. DOI: 10.2760/173513
  6. Fan, J.L., Yu, P., Li, K., Xu, M., Zhang, X. (2020). A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China. Energy. Vol. 242. DOI: 10.1016/j.energy.2021.123003
  7. Golub, A., Lugovoy, O., Potashnikov, V. (2019). Quantifying barriers to decarbonization of the Russian economy: real options analysis of investment risks in low-carbon technologies. Climate Policy. Vol. 19. No. 6. Pp. 716–724. DOI: 10.1080/14693062.2019.1570064
  8. Guo, Z., Wei, W., Chen, L., Zhang, X., Mei, S. (2021). Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs. Energy. Vol. 220. DOI: 10.1016/j.energy.2020.119608
  9. Kannan, R., Turton, H. (2013). A Long-Term Electricity Dispatch Model with the TIMES Framework. Environmental Modeling & Assessment. Vol. 18. Pp. 325–343. DOI: 10.1007/s10666–012–9346-y
  10. Potashnikov, V., Golub, A., Brody, M., Lugovoy, O. (2022). Decarbonizing Russia: Leapfrogging from Fossil Fuel to Hydrogen. Energies. Vol. 15. No. 3. DOI: 10.3390/en15030683
  11. Sen A., Miller J. (2022). Emissions reduction benefits. Working Paper. Available at: https://theicct.org/wp-content/uploads/2022/03/Accelerated-ZEV-transition-wp-final.pdf (дата обращения: 30.08.2022).
  12. Shi, J., Chen, W., Yin, X. (2016). Modelling building’s decarbonization with application of China TIMES model. Applied Energy. Vol. 162. Pp. 1303–1312. DOI: 10.1016/j.apenergy.2015.06.056
  13. Smith, J.S., Edmonds, J., Hartin, C.A., Mundra, A., Calvin, K. (2015). Near-term acceleration in the rate of temperature change. Nature Climate Change. Vol. 5. No. 4. Pp. 333–336. DOI: 10.1038/nclimate2552
  14. Vaillancourt, K., Alcocer, Y., Bahn, O., Fertel, C., Frenette, E., Garbouj, H., Kanudia, A., Labriet, M., Loulou, R., Marcy, M., Neji, Y., Waaub, J.P. (2014). A Canadian 2050 energy outlook: Analysis with the multi-regional model TIMES-Canada. Applied Energy. Vol. 132. Pp. 56–65. DOI: 10.1016/j.apenergy.2014.06.072
  15. Vaillancourt, K., Labriet, M., Loulou, R., Waaub, J.P. (2008).The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model. Energy Policy. Vol. 36. No. 7. Pp. 2296–2307. DOI: 10.1016/j.enpol.2008.01.015