Vol. 48 No. 9 (2018)
ASPECTS OF REAL ECONOMY

Perspective of Motorization in the European Union and China in Various Scenarios of Diffusion of Fully Autonomous Shared Automobiles

M. Ksenofontov
Institute of Economic Forecasting RAS
Bio
S. Milyakin
Institute of Economic Forecasting RAS

Published 2018-10-15

Keywords

  • Мotorization,
  • car-sharing,
  • autonomous vehicles,
  • scenario calculations,
  • long-term forecast

How to Cite

1.
Ksenofontov М, Milyakin С. Perspective of Motorization in the European Union and China in Various Scenarios of Diffusion of Fully Autonomous Shared Automobiles. ECO [Internet]. 2018 Oct. 15 [cited 2024 Nov. 24];48(9):85-107. Available from: https://ecotrends.ru/index.php/eco/article/view/1663

Abstract

The article is devoted to the forecast of car fleet trends in various scenarios of the diffusion of the car-sharing phenomenon and automated driving technologies. The description of scenarios, tools of variant scenario forecast calculations, as well as their results for the European Union and China are given. They demonstrate that in the 25–30 years perspective, these social and technological innovations can have a significant impact on the trajectory of car ownership and total car fleet. Under the influence of new factors, trends in these indicators will be described by a curve that has a «peak», i.e. the maximum value, after which it will be observed not the stabilization of the achieved levels, as in the framework of the traditional approach for motorization processes modeling using S-shaped functions, but a grand-scale decline.

References

  1. Ализар А. Удобные сервисы вроде Uber усугубляют автомобильные пробки, отбирая пассажиров у общественного транспорта // Geektimes, 27.02.2018. [Эл. ресурс]. URL: https://geektimes.ru/post/298599/ (дата обращения: 23.03.2018). [Alizar A. Udobnye servisy vrode Uber usugubljajut avtomobil’nye probki, otbiraja passazhirov u obschestvennogo transporta. Available at https://geektimes.ru/post/298599/ (accessed 23.02.2018) (In Russ.)]
  2. Анисимов Г. Еврокомиссия стимулирует переход на электромобили // Ведомости. 2017. 9 нояб. [Эл. ресурс]. URL: https://www.vedomosti.ru/auto/articles/2017/11/09/741050-perehod-elektromobili (дата обращения: 28.02.2018). [Anisimov G. Evrokomissiya stimuliruet perehod na elektromobili. Vedomosti. Available at https://www.vedomosti.ru/auto/articles/2017/11/09/741050-perehod-elektromobili (accessed 28.02.2018). (In Russ.)]
  3. Вучик В. Р. Транспорт в городах, удобных для жизн Problemy prognozirovaniya / Пер. с англ. А. Калинина под науч. ред. М. Блинкина.: Территория будущего. М., 2011. C. 576. [Vuchik V. R.(2011) Transport v gorodah, udobnyh dlya zhizn Problemy prognozirovaniyai. In: Territoriya budushego. Moscow. P. 576.(In Russ.)]
  4. Дорога в будущее: понять автомобилиста завтрашнего дня. Анализ автономных транспортных средств, встроенных в автомобиль технологий, систем каршеринга и райдшеринга в США // PricewaterhouseCoopers, 2018. [Эл. ресурс]. URL: https://www.pwc.ru/ru/publications/driving-the-future/PWC_AutoTech_russian_Eversion.pdf (дата обращения: 28.04.2018).
  5. Ксенофонтов М. Ю., Милякин С. Р. Процесс автомобилизации и определяющие его факторы в ретроспективе, настоящем и будущем// Проблемы прогнозирования. 2018. № 4. С. 92–105. [Ksenofontov M. Yu., Milyakin S. R. (2018) Process avtomobilizacii i opredelyayushie ego faktory v retrospektive, nastoyashem i budushem. Problemy prognozirovaniya. [Problems of Forecasting] No.4. Pp. 92–105. (In Russ.)]
  6. Эдер Л. В., Немов В. Ю. Прогнозирование потребления энергии легковым автомобильным транспортом // Проблемы прогнозирования. 2017. № 4. С. 83–93. [Eder L. V., Nemov V. Yu. (2017) Prognozirovanie potrebleniya energii legkovym avtomobilnym transportom. Problemy prognozirovaniya. [Problems of Forecasting] No. 4. Pp. 83–93.(In Russ.)]
  7. Эткин Д. Возможный подход к прогнозированию объема продаж массовых автомобилей (на примере авторынка США) // Проблемы прогнозирования. 2009. № 1. С. 132–143. [Etkin D. (2009) Vozmozhnyj podhod k prognozirovaniyu obema prodazh massovyh avtomobilej (na primere avtorynka SShA). Problemy prognozirovaniya. [Problems of Forecasting] No.1. Pp.132–143. (In Russ.)]
  8. Jong G., Fox J., Andrew Daly, Pieters M., Smit R. (2004). Comparison of car ownership models. A Transnational Transdisciplinary Journal. Vol. 24. No. 4. Pp. 379–408.
  9. Tanner J. C. (1975). Forecasts of vehicles and traffic in Great Britain: 1974 revision. Department of the Environment, Transport and Road Research Laboratory, TRRL Laboratory Report 650.
  10. Debabrata D., Subhash D., Sharifuddin. (2010). Car ownership growth in Delphi. Decision. Vol. 37. No. 2. Pp. 51–61.
  11. Dargay J., Gately D., Sommer M. (2007). Vehicle Ownership and Income Growth, Worldwide: 1960–2030. The Energy Journal. Vol. 28. No. 4. Pp. 143–170.
  12. Hao H., Wang H., Yi R. (2011). Hybrid modeling of China’s vehicle ownership and projection through 2050. Energy. Vol. 36. No. 2. Pp. 1351–1361.
  13. Wu T., Zhao H., Ou X. (2014). Vehicle Ownership Analysis Based on GDP per Capita in China: 1963–2050. Sustainability.Vol. 6. No. 8. Pp. 4877–4899.
  14. Button K. J., Hine J., Ngoe N. (1993) Modelling vehicle ownership and use in low-income countries. Journal of Transport and Policy. Vol. 27. No. 1. Pp. 51–67.
  15. Tanner J. C. (1977). Car ownership trends and forecasts. Department of the Environment, Transport and Road Research Laboratory, TRRL Laboratory Report 799.
  16. Tanner J. C. (1983). A lagged model for car ownership forecasting. Department of the Environment, Transport and Road Research Laboratory, TRRL Laboratory Report 1072.
  17. Goodwin P. (2012). Peak Travel, peak car and the future of mobility: Evidence, Unresolved Issues, Policy Implications, and a Research Agenda. International Transport Forum, Discussion Paper. No. 2012/13. P. 41.
  18. Arbib J., Seba T. (2017). Rethinking Transportation 2020–2030: The Disruption of Transportation and the Collapse of the Internal-Combustion Vehicle and Oil Industries. A RethinkX Sector Disruption Report. Available at: http://www.rethinkx.com/transportation/ (accessed 28.02.2018).
  19. Hawksworth J., Berriman R., Goel S. (2018) Will robots really steal our jobs?: An international analysis of the potential long term impact of automation. PricewaterhouseCoopers. P. 47. Available at: https://www.pwc.co.uk/economic-services/assets/international-impact-of-automation-feb-2018.pdf (accessed 28.02.2018).
  20. Shaheen S., Cohen A., Jaffee M. (2018). Innovative Mobility: Carsharing Outlook. California Digital Library, University of California, P: 8. Available at: https://cloudfront.escholarship.org/dist/prd/content/qt1mw8n13h/qt1mw8n13h.pdf?t=p5wqud (accessed 28.02.2018).
  21. Marshall A. (2017). After Peak Hipe, Self-Driving Cars Enter the Trough of Disillusionment. Wired. Available at: https://www.wired.com/story/self-driving-cars-challenges/ (accessed 28.02.2018).
  22. Lenardi M. (2017) The future of driverless cars in Europe. Hitache. Available at: http://www.hitachi.eu/en/social-innovation-stories/transport/future-driverless-cars-europe (accessed 28.02.2018).
  23. Brodsky J. S. (2016). Autonomous Vehicle Regulation: How an Uncertain Legal Landscape May Hit The Brakes on Self-Driving Cars. Berkeley Technology Law Journal. Vol. 31. No. 2. Pp. 851–877.
  24. Grush B., Niles J., Baum E. (2016). Ontario Must Prepare for Vehicle Automation: Automated vehicles can influence urban form, congestion and infrastructure delivery. Residential and Civil Construction Alliance of Ontario. P. 76.
  25. Higgins T., Spector M., Colias M. (2018). Tesla, Uber deaths raise questions about the perils of partly autonomous driving. Wall Street Journal. Available at: https://www.wsj.com/articles/tesla-uber-deaths-raise-questions-about-the-perils-of-partly-autonomous-driving-1522661400 (accessed 28.02.2018).
  26. Kurman M., Lipson H. (2018). Why the rise of self-driving vehicles will actually increase car ownership. SingularityHub. Available at: https://singularityhub.com/2018/02/14/why-the-rise-of-self-driving-vehicles-will-actually-increase-car-ownership/#sm.00001w23437829djxttku2r13oqmg (accessed 28.02.2018).