ЭКОЛОГИЯ И ЭКОНОМИКА
Опубликован 06.03.2023
Ключевые слова
- биотопливо; загрязняющие вещества; парниковые газы; золошлаковые отходы; стоимость сокращенных выбросов
Как цитировать
1.
Майсюк Е, Губий Е. Эффективность использования древесного топлива на Байкале. ECO [Интернет]. 6 март 2023 г. [цитируется по 24 январь 2025 г.];53(3):110-23. доступно на: https://ecotrends.ru/index.php/eco/article/view/4581
Аннотация
В статье предложен метод эколого-экономической оценки эффективности природоохранных мероприятий для энергообъектов. В его основе – расчет соотношения затрат на реализацию природоохранной технологии и экологических эффектов от её внедрения. Это позволяет оценить экологический эффект в виде предотвращенных выбросов загрязняющих веществ, парниковых газов или золошлаковых отходов в стоимостном выражении. Апробация метода проведена на примере замещения угля топливными пеллетами и щепой в котельных, расположенных в центральной экологической зоне Байкальской природной территории. В статье показано, что эколого-экономическая эффективность использования древесного топлива зависит от его цены и качественных характеристик, транспортной инфраструктуры местности, мощности теплоисточника. В результате замещения угля древесным топливом в 14 рекомендованных котельных может быть достигнут заметный экологический эффект: снижение выбросов загрязняющих веществ на 94%, сокращение эмиссии парниковых газов в атмосферу на 99,9%, уменьшение образования золошлаковых отходов на 92–91%.Библиографические ссылки
- Санеев Б. Г., Иванова И. Ю., Майсюк Е. П., Тугузова Т. Ф., Иванов Р. А. Энергетическая инфраструктура центральной экологической зоны: воздействие на природную среду и пути его снижения // География и природные ресурсы. 2016. № 5. С. 218–224. DOI: 10.21782/GIPR0206–1619–2016–5(218–224)
- Baker, E.D., Khatami, S.N. (2019). The levelized cost of carbon: a practical, if imperfect, method to compare CO2 abatement projects. Climate Policy. Vol. 19(9). Pp. 1132–1143. DOI:10.1080/14693062.2019.1634508
- Buss, J., Mansuy, N., Laganière, J., Persson, D. (2022). Greenhouse gas mitigation potential of replacing diesel fuel with wood-based bioenergy in an artic Indigenous community: A pilot study in Fort McPherson, Canada. Biomass & Bioenergy. Vol. 159(59). Pp. 106367. DOI: 10.1016/j.biombioe.2022.106367
- Buss, J., Mansuy, N., Madrali, S. (2021). De-risking wood-based bioenergy development in remote and indigenous communities in Canada. Energies. Vol. 14. P. 2603. DOI: 10.3390/en14092603
- Friedmann, J., Fan, Z., Byrum, Z., Ochu, E., Bhardwaj, A., Sheerazi, H. (2020). Levelized Cost of Carbon Abatement: An Improved Cost-Assessment Methodology for a Net-Zero Emissions World. Available at: https://www.energypolicy.columbia.edu/sites/default/files/file-uploads/LCCA_CGEP-Report_101620.pdf (accessed 21.11.2022).
- Gubiy, E. (2022). The use of waste products of the forestry sector for energy purposes in the central ecological zone of the Baikal natural area. IOP Conference Series: Earth and Environmental Science. Vol. 4. P. 012002. DOI 10.1088/1755–1315/990/1/012002
- Vogt-Schilb, A., Meunier, G., Hallegatte, S. (2018). When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment. Environmental Economics and Management. Vol. 88. Pp. 210–233. DOI: 10.1016/j.jeem.2017.12.001
- Zia, H. (2020). LCCA and Environmental Impact of Buildings. Reference Module in Materials Science and Materials Engineering. Pp. 133–143. DOI:10.1016/В978–0–12–803581–8.10675–7